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We generalize the Fibonacci Penrose tiling to three classes of one-dimensional, two-tile Penrose
tilings which can be obtained geometrically as well as recursively. From a numerical study of their
spectral properties, we conclude that the Fibonacci case has the generic features of all three classes.
As a model of epitaxial quasiperiodic superlattices we consider a Fibonacci Kronig-Penney model
and give a physical picture relating structural to spectral properties.

Quasiperiodic systems have received much theoretical
attention in recent years. Considerable progress has been
made especially in one dimension by Ostlund et al.! and
Kohmoto et al.>~* The simple scaling properties of the
Fibonacci quasicrystal in particular, were shown to lead
to a rich nonlinear dynamics in the form of the Kohmoto,
Kadanoff, and Tang (KKT) renormalization scheme.
While the issue as to whether quasicrystals occur natural-
ly is not settled yet, man-made superlattices, in which
thin films of semiconductor are stacked in a quasiperiodic
manner, are indisputable physical realizations of one-
dimensional (1D) quasiperiodic systems. Such superlat-
tices have been grown epitaxially and their structural
properties have been confirmed experimentally.>~" So far
only Fibonacci lattices have been discussed in any detail
in the literature. The Fibonacci lattice has golden-mean
incommensurability, (1+V/5)/2, and is a special case of
a two-tile Penrose tiling of the line. Here we generalize
to three classes of two-tile Penrose tilings. From a study
of their multifractal electronic spectra and corresponding
wave functions we conclude that the Fibonacci case,
despite its simplicity, has the generic features of all three
classes.

In addition to the work by Kohmoto, we were motivat-
ed by a paper of Stromer et al.® in which, among other
things, measurements of the Fermi surface of a periodic
GaAs/Ga,_, Al As superlattice were presented. What
does a similar measurement on a quasiperiodic superlat-
tice show? To answer this question, we explicitly calcu-
late the one-electron energy spectrum and wave functions
for periodic approximations to a quasiperiodic superlat-
tice which we model, in the spirit of Ref. 8, by a Kronig-
Penney-type potential. Combining the symmetries of
two-tile Penrose tilings with a simple perturbative calcu-
lation of the band gaps, we give a physical picture relat-
ing structural to spectral properties. This paper is organ-
ized as follows.

In Sec. I we show how to obtain a class of two-tile Pen-
rose tilings by geometrical construction. We give recur-
sion relations which generate tiling sequences equivalent
to the geometrically obtained ones for three classes of
quadratic incommensurabilities. Such recursion rela-
tions, also known as inflation rules, embody the sym-
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metries of the tiling. The three classes are generalizations
of the Fibonacci case and we call them F classes.

In Sec. IT we consider the spectral properties of the F
classes. To this end we briefly review the theory of mul-
tifractals. We present numerical evidence, in the form of
tight-binding spectra and wave functions for some
members of these classes, which shows that the Fibonacci
case has the generic features of all members of the F
classes. We briefly discuss the KKT renormalization
scheme and what we generalized thereof so far. We con-
sider the possibility of labeling the states of the multifrac-
tal with quantum numbers which also label a sequence of
inflation transformations under which the corresponding
wave functions are invariant.

In Sec. III we turn to Fibonacci superlattices as
modeled by a Kronig-Penney model. Explicit numerical
results are presented and compared to a simple perturba-
tive calculation of the band gaps leading to a physical
picture relating structural to spectral properties. The cal-
culation also gives a clear picture as to what we may con-
sider to be the Fermi surface of such a superlattice.

I. GEOMETRICAL CONSTRUCTION
AND SYMMETRIES OF TWO-TILE
PENROSE TILINGS OF THE LINE

A class of 1D quasicrystals can be obtained geometri-
cally by projecting from two dimensions as follows® (Fig.
1). Take the 2D lattice L(x,y)=3, , 8(x —an)d(y
—bm). Draw the line A={(x,y)|y—xtan6}. If
tan@=r is irrational when x is measured in units of a and
y in units of b, A is incommensurate with the lattice. In
these units (which we shall call cubic units) choose
m/4<0<m/2 and let 7 be irrational. Now draw lines
parallel to A through the lattice points (—a,0) and
(0, —b) thus defining a strip (2, the interior region bound
by these lines. The 1D quasicrystal is then obtained by
projecting the points L NQ N {(x,y) | x >0,y >0} onto A.
Let the lattice of projected points on A be denoted by
L(§)=37.08(6—¢;) with §,=0. Because 2Udq con-
tains only one conventional unit cell of L(x,y),
[—a,0]1x[0,—b], Q contains none. Consequently
§j+1—G; can only take on two values /,=b sinf and
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FIG. 1. The geometric construction of the Fibonacci lattice
for a =b. One deflation step is shown.

lg =a cosB, the projections of the lattice vectors [0,b]
and [a,0], respectively. L({) is a Penrose tiling (i.e., an
aperiodic tiling) of the line with the tiles / , and /5. The
incommensurability tanf is seen to be the ratio of the
number of A tiles to the number of B tiles. Further, we
note that a B tile is always surrounded by A tiles and
there can be at most int(147) A tiles side by side, where
int(x) is the integer part of x. L({) defines a sequence of
tiles and hence a sequence of A’s and B’s which has a
well-defined start because the origin of L (x,y) is the only
point of L (x,y) on A. We denote the first P elements of
this geometrically obtained sequence by GP(r).

While the geometrical construction of the tiling facili-
tates easy calculation of its Fourier transform (see Ref. 10
and Sec. III below), we would like to have an explicit
analytical expression for Gf(r) embodying the sym-
metries of the 1D quasicrystal. For example, it is well
known that the above geometrical construction with
tan@=(14+V'5)/2, the golden mean, generates a sequence
of tiles identical to that obtained by iterating the recur-
sion relation ( A,B)—( AB, A). What can we say about
different incommensurabilities? Consider a recursion re-
lation of the form

Sk+1(4,B)= le,,s," (A4,B), M
iz

where N is a square matrix of positive integers, S;( 4,B)
stands for an ordered string of A4’s and B’s and “addi-
tion” is ordered concatenation of strings. For example, if
S,=ABA, S,=BBA we would have S§,+5,
=ABA,BBA, S,+S,=BBA,ABA, and 4S,=(S,)*
=ABA,ABA,ABA,ABA. SK(A,B) defines the kth
generation of a sequence of A’s and B’s which is obtained
by iterating Eq. (1) k times with the initial conditions
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S% 4,B). The symmetry expressed by (1) is a set of m

rules S; — (S, sML(S,) Nia (S,,) ™ which tells us how
to “inflate” pleces of the sequence Sk(A4,B) to obtain its
next generation, S* *1(4,B). It is essentially a discrete
conformal symmetry which, at least in the Fibonacci
case, is known as inflation symmetry. We single out
S¥(A4,B) as the kth generation tiling sequence of the 1D
quasxcrystal If PX 4, and PB denote the number of A’s

and B’s contained in S k( A, B) then

k+
P4 1!13)=2NUP(AB )
j=
and 7=lim;_, , 74, where 7, EPf,l /P,’,fl, is the solution

of a polynomial with rational coefficients. What we seek
then are N;; and S ( A,B) such that 7 is irrational and

S’{(A,B):G ‘(r) , 3)

where P}=Pk +P}f. For future reference let o(7)

=lim,_, , (P¥*'/P¥) and note that P¥~o*
Equivalence (3) is generally not satisfied; counterexamples
are readily constructed. To date we were able to identify
three classes of 2 X2 recursion relations which do satisfy
(3).

The first class is a straightforward generalization of the
Fibonacci recursion relation which corresponds to
S,=4,8,=B,N;=N;;=N,;=1, and N,, =0. This re-
cursion relation has an especially simple inflation symme-
try which, in cubic units, has the geometric significance
that the ratio of the length of the tiling corresponding to
the kth iterate of 4 to the length of the tiling correspond-
ing to the kth iterate of B is independent of k and equal
to the incommensurability 7=1[,/l5. To preserve this
symmetry a 2 X2 matrix N must obey

N“lA+lelB:T(N2]IA+N2218) (4)
and 7 is determined as a root of
2 —7Tr(N)+det(N)=0, (5)

where Tr denotes trace and det determinant. Comparing
coefficients of (4) and (5) and setting N, =1 so that B
tiles are isolated, we arrive at the recursion relation

A’ n 1|4
and corresponding incommensurability
rn)=0=3[n +(n2+4)"?]
—n+ — : ™
n+ e 1
p— L
n _+_ ...

where the continued-fraction representation for 7 is gen-
erated by the associated quadratic, Eq. (5). 7, is seen to
be given by the first k terms of this continued fraction.



Furthermore, we have P,’;] =P,’§l‘1 and
P’jl =F,=nF, _+F,_, with Fy=1 and F, =n. Explic-
itly,

Fk___[1_k+l+(__l)kT—(k+l)]/(n2+4)I/2 .

When n =1 the numbers F, are known as Fibonacci
numbers. We call the 7(n) of Eq. (7) precious means, (1)
and 7(2) conventionally being called the golden and silver
mean, respectively (this nomenclature is consistent with
the traditional assignment of the first few irrationals of
this class to precious metals).

Class 2 generalizes a different form of the Fibonacci
rule given by S, =4, S,=BA, N;;,=N;=N,; =1, and
Ny, =2 which has the symmetry Py =P§]. The general-
ized recursion relation preserving this symmetry is given
by

A’ 1 n A
(BAY |= |1 n+1]||B4 ®
and 7 is the positive root of
?—1r—1/n=0, 9)
1 4 172
m(n)== |1+ |1+— ]
2 n
1
n+
1
1+
n+1+...

Here too, 7, is given by the first (k +1) terms of
the continued-fraction expansion of 7. We obtain
o=7/(t—1).

Class 3 is the generalization of yet another form of
the Fibonacci sequence: S;=ABA, S,=BA, N;;,=N,,
=N,,=1, and N,;=2. The symmetry which we general-
ize here is Pﬁl =P,’g‘l +Pl’,‘2. The generalized recursion re-

lation preserving this symmetry is given by

(ABA) n+1 1| |ABA
(BAY |=| n 1||B4 (1
The incommensurability 7 satisfies
?4+7n—2)+1-2n=0; (12)
that is,
m(n)=1{2—n+[(2—n)’+4(2n —1)]""%}
—0+ 2n —1 : (13)
2n —1
n—2+ 2n —1
n—24 w2

where the continued-fraction expansion is valid for n > 2.
Here 7, bears no obvious relation to the truncated
continued-fraction expansion  (13). Furthermore,
o=[r(n+2)+n +nr/(r+n—-1)1/(r4+1).

Figure 2 shows a plot of the three classes of quadratic
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FIG. 2. Summary of the recursion relations considered in
this paper and a plot of their incommensurabilities.

irrationals 7(n) and summarizes the corresponding recur-
sion relations. We note that as n — o the 7(n) approach
rational values asymptotically and the quasicrystals have
larger and larger periodic segments. Clearly the Fibonac-
ci lattice is the simplest and most symmetric of all 1D
quasicrystals. We call the subset of L () such that
§i+1—6;=1,p, the 4 (B) lattice, denoted by L , g({)
=3;8(8—E 4 B),-)' The Fibonacci lattice is the only 1D
quasicrystal for which the 4 and B lattices are them-

selves 1D quasicrystals obeying the same recursion rela-
tion. The Fibonacci A4 and B lattices are given by

1, +IBEIAA ,

§iv1,—6,= with {,=0, (14)
1, EIBA
21, +IBEIAB ,

§j+xﬂ—§j3= with So=1,, (15)

IA +IBEIBB

as we can see upon inflating once and twice, respectively.
Th7is fact has also been exploited by Dharma-wardana et
al.

It is not obvious that equivalence (3) is indeed satisfied
by (6), (8), and (11). For class 1 a geometrical proof is al-
ready built into the way we obtained it. It is simply the
fact that the inflation symmetry of this class can be made
manifest geometrically by scaling both lattice constants
of L (x,y) by a factor of 7 (Fig. 1). It is also straightfor-
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ward to generalize the algebraic proof given by Mac-
Donald!' for the Fibonacci case, to all the precious
means. If 7; denotes the vector from the point §; on
L (&) to the point of L (x,y) from which it was projected,
one proves that for the set {§;}, inf(y;-X)=—a and
inf(7;-§)= —b assuming equivalence (3). We expect that
such a proof can also be furnished for classes 2 and 3; we
have satisfied ourselves with a numerical check.

From a number-theoretic point of view many questions
remain. One is led to conjecture that a recursion relation
of the form (2) exists for any irrational which is the root
of a polynomial with rational coefficients. If the incom-
mensurability is a transcendental, can one still speak of
inflation symmetry? A different choice of () will general-
ly result in a considerably more complicated situation; in
particular, one will generally have more than two tiles.
What are the corresponding recursion relations? Does
some geometrical construction give sequences corre-
sponding to a generic recursion relation of the form (2)?
There clearly remains much to be understood, disco-
vered, and proved.

II. MULTIFRACTAL SPECTRA,
INFLATION SYMMETRY,
AND QUANTUM NUMBERS

To study the problem of electrons in a 1D quasicrystal
having inflation symmetry, it is natural to consider a se-
quence of periodic lattices. The kth element of this se-
quence has the kth inflation of (2) as its unit cell and we
call it the kth periodic approximation (PA). As k—
the sequence of PA’s converges to the 1D quasicrystal.
In the kth PA, the unit cell contains P¥ tiles and has
length L, =P511A +P§]lB. The potential in which the
electron moves, is obtained by convolving the 4 (B) lat-
tice of the 1D quasicrystal with some potential V 4 p(£)
of finite range. The spectrum of the Hamiltonian, wheth-
er in a tight-binding or Kronig-Penney model, can con-
veniently be calculated by casting the problem in transfer
matrix form, where the transfer matrix relates the wave
function over a tile to the wave function over the next
tile. For the kth PA, we can thus associate the sth tile of
the unit cell, and therefore of S’l‘( A,B), with a transfer
matrix T, which generally depends on the type of the sth
tile (i.e., A or B) and the type of its neighbors. The net
transfer matrix for a unit cell is then given by
Mlk :HSI=P,; Tssz;chf_, -++T,. Similarly we can

define matrices M; for all the sequences SX( 4,B) of (2).

The inflation symmetry (2) then implies a renormal-
ization group equation for the M,k, relating the kth PA

to the (k +1)th PA:

N; Ni m— N:,
=(M,, )" (M yy ) ) 2" (M )L (16)

ik +1 -
The energy E will belong to the spectrum of the kth PA,
if lim,, _, [Mlk (E)]" exists. That is, if

| x, | <1 where x; E%TI‘(MI") . (17)

Other physical problems'? in 1D quasiperiodic geometry
lead to similar conditions on the trace of M, . By iterat-
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ing (16) and finding the set of energies satisfying (17) at
each step of the iteration, we obtain a sequence of spec-
tra, corresponding to the sequence of PA’s, which con-
verges to the spectrum of the quasiperiodic Hamiltonian.
Bands of the zeroth PA generally split up into P, bands
in the kth PA, where P, is the number of distinct tiles
per unit cell. Unless there is some incidental symmetry,
P,=P% We find that the sequences of spectra for
members of the F classes converge to multifractal Cantor
sets of zero Lebesque measure just as in the golden-mean
case. Physically this is plausible if we think of the gaps as
being due to recursively introduced periodic defects.

To characterize these multifractals, we follow Halsey
et al."® First, we map the k =0 band onto the interval
[0,1] and scale all other spectra accordingly. In the fol-
lowing discussion we refer to the rescaled bands. With
the jth band of the kth PA, having a width (or “support”)
w;, we associate a probability measure p=1/P; corre-
sponding to the density of states integrated over this
band, i.e., we normalize the number of states to 1. The

scaling exponent a; is then defined by p =w;1’ . For the
subset of N (a) bands which scale like a, and hence have
width w(a), the density exponent f(a) is defined by
1=N(@w(a)'¥. f(a) is an entropylike quantity:
fla)~InN(a). As k— o, f(a) converges to a spectrum
of fractal dimensions which we expect to be a smooth
function which then characterizes the multifractal. We
obtain f(a) by a method which is essentially thermo-
dynamic and motivated in Ref. 13. Here we only summa-
rize the relevant results and point out some of the salient
features: Let g (f3) be defined by the function

Pk q

. Py
ZPk = 2 B
j=1Wj

=1. (18)

We may consider g to be a free energy as can be seen
from (18) by defining Z=3;%* ,w; " so that
q=(InZ)/(k Ino). The entropylike variable f(a) is then
obtained from g () via a Legendre transform

aB B

=qE—.3, a:—d; . (19)

Following Kohmoto,'* we can make the thermodynamic
analogy yet stronger by writing wjze—ﬂksf . If we now
define the entropy S(e)=(1/k)InQ(e), where € is the
average of ¢; over Z at fixed B and ((e)de is the number
of bands whose “energy” ¢; lies between € and e+dg,
then it is straightforward to show that as k — o

S(e) Ino

f(a)z , a@="—"—. (20)
€ €

fla)

The maximum of f(a), f(&), can be shown to be the
Hausdorff dimension of the multifractal, @ being its typi-
cal scaling exponent (the “thermal average” of the a’s).

If one calculates g (B) first from (18) and then obtains
f(a) from (19), f(a) is a smooth function by construc-
tion for any k, whereas S(¢) is expected to converge to a
smooth function only as k— . Numerically, we find
that the former method is more convenient and con-
verges rapidly if we are indeed dealing with a well-defined
Cantor set such as a tight-binding spectrum. The latter
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appears to yield a more robust numerical procedure if we
wish to obtain f (a) for a portion of a Cantor set or for a
portion of a union of Cantor sets over a semi-infinite en-
ergy range such as we shall encounter in the Kronig-
Penney model (see next section).

To investigate the spectral properties of the F classes
we considered, for simplicity, the diagonal tight-binding

model
r 12
T 'ps —1

¢s +1
Y
with V=V, 5. We chose V=1 and Vz=2. For this
model, Fig. 3 shows f(a) for the first three members of
each of the three F classes. We see that as n increases the
Hausdorff dimension increases slightly. The more
periodic character of the lattice manifests itself in the in-
creasing maximum value of a. To the accuracy of our
calculations classes 2 and 3 have the same Hausdorff di-
mension for n =2 and 3. To get rapid convergence, we
obtained g () by setting Z ,',k =Z ,',k » and then calculated
f(a) from (19). For some cases (indicated by a cross in
Fig. 3) convergence for & << @ < ay,, was nonuniform. In
the Fibonacci case where a;, and a,,, are known analyt-
ically* (also see below), f(a) obtained from Zp =Zp

differs from that obtained from Z; =Zp for a>a.

E-V, —1
1 0

, Ty= (21)

The former overshoots a,,,,, the latter undershoots a,,,
by roughly the same amount. The numerical f(a) curve
appears to have a discontinuity of 3%f(a)/da?® at &@. Pre-
liminary calculations indicate that &—a,,,, as k— .
Figure 4 shows the magnitude of the on-site probability
amplitudes |, | at the center of the center tight-binding
band for the first three members of the F classes in the
PA’s indicated in the figure. In the sense that (16) is al-
ways satisfied, the wave functions are clearly “critical” in
nature and bear remarkable resemblance to those of the
golden-mean case.

1.0 m T " T

CLASS |n

—_— 11

.............. 1 2

—————— 3

————— 2

——x2|3

—_ —_——- 3|2

(o 05+ 313
L]

ba

1.0

(04

FIG. 3. f(a) vs a for the diagonal tight-binding model [cf.
Eq. 21)]. The curves were computed from Zy(q,8)=Zy(q,B).
The (N,M) are, in the order of the table, (377,987), (239,577),
(142,469), (71,256), (163,781), (41,571), (67,321). A cross indi-
cates the maximum value of a for which uniform numerical
convergence was obtained. a, and a4 are the analytically ob-
tained values for a,,;, and a,, in the Fibonacci case (class 1,
n=1).

For the precious means (16) is particularly simple:
My =M M, (22)

where M, EMkl. One can readily show that the traces of

2X2 matrices of unit determinant obeying (22) obey a re-
cursion relation themselves. For n =1 we have

X 42=2Xp 41 X —Xp _1 (23)

as first pointed out by KKT,? who discovered that (23)
forms a 3D map (x,y,z)—(y,z,2yz —x) on the invariant
manifold I=x%+y?+422—2xyz—1. Note that the 3D
map conserves volume. Area on the invariant manifold
is, however, not conserved except on n-cycles of the trace
map. For I <0, the manifold I consists of a central com-
pact part and four infinite sheets.>3> When I =0, the
infinite sheets join the central part through four
bottlenecks which widen with increasing 7. When I <0
trace-map orbits starting on the compact part will obvi-
ously remain there. For I >0 they can escape over the
bottlenecks, where the size of a bottleneck, and hence I,
controls the rate of escape. Whether or not one sits in a
band of the kth PA, for fixed I, is a function of the initial
conditions for the KKT map, (x,y,z(x,y,I)). The set
{x,y,z(x,p,I)}, such that | x; | <1 at fixed I, forms the
kth approximation to a 2D multifractal on I (Fig. 5).

An algorithm for generating the trace maps of the oth-
er precious means is given in the Appendix. Invariants
for these, if they exist, still remain to be found. The scal-
ing exponents a, for states of the multifractals corre-
sponding to n-cycles of these trace maps can then be ob-
tained analytically by linearizing the trace maps about
these cycles. (See Note added in proof.)

If the symmetries of the 1D quasicrystal are expressible
by an inflation relation of the form (2), it is natural to la-
bel the eigenstates of the Hamiltonian by an infinitely
long sequence of n-ary digits, where n =int(1+0). Sup-
pose there are P{‘ bands. If their eigenfunctions were ex-
ponentially localized, an unambiguous assignment of lat-
tice sites to bands would be possible. Here, however, the
wave functions are critical and hence not clearly associat-
ed with any lattice site in particular. While there may
still be a natural way to make the assignment, here we ar-
bitrarily map the tiling sequence S¥ onto the bands in or-
der from lowest to highest energy. If we consider the
bands of the kth PA as mother states of the ~oP¥
daughter states of the (k +1)th PA, we can assign one in-
teger m€{0,...,n —1} to each daughter state accord-
ing to the following rule: We label the sth element of S’
(the daughter states) by m =(s — 1) modn and assign it to
the [(s —m —1)/n+1]th element of S¢ (the mother
state). This assignment is then to be preserved as (2) is
iterated. This procedure, which we illustrate in Fig. 6 for
the silver-mean spectrum of (21), defines a family tree or
n-furcation sequence for the daughter states. The n-ary
quantum number is then simply the sequence of assign-
ments m at each inflation step defining a branch of the
family tree. With the proper assignment of tiles to bands,
it should be possible to identify the n-ary quantum num-
ber with a sequence of inflation steps and reshufflings of
parts of the corresponding wave function under which
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FIG. 4. The magnitude of the on-site probability amplitudes for the center states of the diagonal tight-binding model [cf. Eq. (21)).
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FIG. 5. The set {(x,y,z(x,y,I))|z)0} of the golden-mean trace map which has not escaped after 13 iterations is shown for the
values of I is indicated. (Actually the subset which falls on a 4000 X 4000 grid covering [ —2,2]1X[—2,2].) The rate of escape is seen

to be governed by 1.

the wave function is invariant. In the Fibonacci case
such an invariance has been exhibited for the center and
edges of the tight-binding Cantor spectrum.’® There,
however, the invariance is trivial as the wave functions
are fractal. The general case of an arbitrary state needs
to be elucidated still. In any case any well-defined assign-
ment should make the sequence of spectra amenable to
an analysis in terms of a mother to daughter ratio func-
tion which, as pointed out by Feigenbaum et al.,'* allows
one to map the system onto an Ising model. Such an
analysis has yet to be carried out for the quasiperiodic
electron problem.

II1I. THE FIBONACCI-KRONIG-PENNEY MODEL
AND A PHYSICAL PICTURE CONNECTING
STRUCTURAL AND SPECTRAL PROPERTIES

In approximating a GaAs/Ga, _, Al, As superlattice by
a Kronig-Penney (KP) potential, one assumes that the

J

ikd
e " 0

—ikd
0 e "

Cn+l
D

C

n

D,

1/t* r/t
r*/t* 1/t

n+1

E[Tn]

electrons have an effective mass m *=0.0667m,, move in
a potential of square barriers (Ga,_,Al, As) and square
wells (GaAs) perpendicular to the layers, and are free
parallel to the layers. (The barrier height is controlled by
the aluminum concentration.) We are thus left with an
essentially 1D problem which we will analyze below.

A quasiperiodic Kronig-Penney potential is obtained
by convolving the A4 (B) lattices with the pulses
Vap(8)=V,p if {E(8,w,p+8] and zero elsewhere,
where 0 < (w4 5 +8) </ 4 5. Given the incommensurabil-
ity, the two-tile KP potential is thus defined by the eight
parameters w4 p, 8 4 p,d 4 p,and V4 p.

Consider a string of KP pulses. The solution to the
Schrodinger equation in the well regions between pulses
is given by C,e**+D,e ¢ where k=(2m*E /#)'/2.
The amplitude in front of barrier n +1 is related to the
amplitude in front of barrier n by

Cn
D, | 24)

where ¢ and r are the transmission and reflection coefficients of barrier n and d,, is the sum of the width w, of barrier n

and the width of the well following it.

For our kth-generation Kronig-Penney quasicrystal, Bloch’s theorem reads

+ Tr(M, )=x; (E)=cos(KL;)

(25)

for crystal momentum K. From now on we consider only the Fibonacci case for simplicity and, as discussed in Sec. II,
without loss of any important features. Accordingly, we calculate x; by iterating the golden-mean trace map with the
initial conditions x =1 Tr(Tp), y=+Tr(T 4), and z =1Tr(TT,). Explicitly,

x =cosh(A 4)cos(@ 4), y=cosh(Ag)cos(gp),

z=cosh(A ;) cosh(Ag)cos(@ 4 +@g)+ | sinh(A ) sinh(Ag) | cos(kA), (26)

I'=cosh¥(A ;) cos* (@ 4)+cosh’(Ap) cos*(@p)+[ | sinh(A ,)sinh(A) | cos(kA)—cosh(A 4) cosh(Ag ) sin(g ) sin(@p)]*

—cosh*(A ) cosh?(Ag) cos¥(p 4) cos*(@g)—1,
where

i X
tan=Its5e 48, cosh(h p)=—1—
| 24,8

I

N ¢A,BEde,B+XA,B’ AEdA“—'dB .
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Notice that I is not positive definite. Numerically, we
find that for some parametrizations of the KP potential,
the invariant I is negative for energies below the ground
state. Because we may view iterating (1) as introducing
periodic defects in a recursive manner, we generally ex-
pect new gaps to appear with each iteration. In this
sense, the essential physics of the quasiperiodic electron
problem demands that trace-map orbits be able to escape
and thus the initial conditions for the trace map which
make I <O for sufficiently low energies must lie on the
infinite sheets of I which lie outside x*+4y?+z1=3.
Equation (25) is the dispersion relation for the KP bands
of the kth PA. Wave functions are obtained by propaga-
ting an eigenvector of M, through the unit cell using the
elementary transfer matrices (24) and matching boundary
conditions at the barriers.

Typical lattice parameters of relevance to experiments
are barrier heights of the order of 100 meV and well and
barrier widths of the order 10-100 A. We performed ex-
plicit numerical calculations for the lattice

(wA,BA,dA, VA,wB,SB,dB, VB)

=(17 A,0,59 A, 134 meV,17 A,0,59/7 A,134 meV) ,

which we shall refer to as the G lattice. The band struc-
ture converges to a multifractal Cantor set as n — « (Fig.
7). Figure 8 shows the scaling exponents ¢; = — {; InAE;
for the 17th PA, where AE y is the width of the jth band
in meV. From this set of scaling exponents we obtained
the entropy function S(e) and calculated spectra f(a)
from (20) (including finite-k corrections) for the spectrum
up to energy E (Fig. 9). With increasing E, a,,,, increases
and the Hausdorff dimension approaches 1. This agrees
with one’s intuition that the more energetic the electrons
are, the more free-electron-like they become despite the
fact that as kK — o« the Lebesque measure of the spectrum
is expected to go to zero for arbitrarily high energies.
Figure 7 shows that the KP bands form clusters, the
nth cluster containing F, bands. Each cluster, in turn,
resembles the band structure obtained from a tight-
binding model. To understand this intuitively, we calcu-
late the size of the gaps as obtained from simple two-level
degenerate perturbation about free-electron states. The
well-known result is that the nth gap AE

g, is given by
AEg" == 2UnK
potential and Ky, =27/L. Using the geometrical con-

struct for the infinite lattice L({), Zia and Dallas!© obtain
its Fourier transform

52’ where U, is the Fourier transform of the

‘/277 ipnmasinﬂ_eipnmbcose

2b 3 <

n,m pnm

L(k)

8k —Kpm)

27

where
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FIG. 6. n-furcation tree for the tight-binding bands of the
silver-mean tiling. The rules of construction are given in the
text.
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FIG. 7. Left-hand side: the band structure of the 10th PA to
the G lattice. For energies below approximately 100 meV, the
cluster structure looks approximately the same on a scaling
E—E /7. E is measured with respect to the system ground
state which is 40.5 meV above the free-electron ground state.
Right-hand side: the evolution of the indicated band cluster as
we go to higher PA’s labeled by n. The bands converge to a
multifractal Cantor set. E is measured with respect to the free-
electron ground state. (The ground-state energy depends on n.)
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w
0 500 1000
E (meV)
FIG. 8. The scaling exponents ¢; = — — In(AE;) vs E for the

17th PA to the G lattice. AE; is the w1dth of the jth band cen-
tered at energy E. The horizontal dashes are the bands them-
selves.

Prm =21

mn cosf— 2 sinf@
b a

(28)
Koy =277

z cosf+ L sin@ l .
a b

The kth PA of L({) is the periodic extension Q, () of

Q(&)=L(&)g(&), where g(§)=1 if £€(0,L,] and zero
elsewhere. The Fourier coefficients of @, () are given by

1.0 —r—————t
750 meV _
'/'--/
l/’
08 /' N
-
Ji\’v\
- \ 175 meV
&S 06} A \ .
— 4
50 meV
I
04} .
0206 08 10 12

FIG. 9. f(a) as obtained from the data shown in Fig. 8 for
bands between the ground state and the energy indicated.

i r
a=rf)e k’§Q<§)d§=—2£Q(k1>—201 . @9)
where
. w? | sin(pynw/2) |* [ sintk,—k,, )L /2 |?
frm I"m 2b2 pnmw/2 kl_knmL/2

(30)

with k; =27l /L, w=a sin@+b cosf. The main peaks in
¢f'c; occur when [ is a Fibonacci number F; and
(n,m)=(F,,F, ) in Eq. (30), so that the sm(x)/x func-
tions are nearly 1. There are two major peaks between
peaks F; |, and F, ,: The first comes from (n,m)
=2(F,_,F,) and the second from (n,m)=(F,
+F, _,F, ,+F,). Similarly, other peaks can be seen
to be harmonics of Fibonacci peaks or to correspond to
sums of Fibonacci numbers and their harmonics. The ra-
tio between successive Fibonacci peaks in ¢;*c; is approxi-
mately 7%, while / < F, in the kth PA. This can be under-
stood in terms of our geometric inflation picture. Going
to the next Fibonacci number in /, and thus to the length
scale of the next inflation, corresponds to a scaling of the
2D lattice by a factor of 7. This gives a factor of 7*(1/72)
for ¢/*c; from (30) in the new length scale. However, we
have fixed L, for which the factor 1/7? overcompensates,
giving a net 7*. Roughly speaking, going to the next Fi-
bonacci number corresponds to a scaling by 7 in the
linear d1mens1ons of the embedding 2D lattice, giving a
factor of 7* and not 7? as expected for a snnple scaling in
one dimension. The fact that this scaling is approximate
is due to the sin(x)/x functions not being exactly 1 at a
peak. We conjecture that the peaks of Fourier trans-
forms of quasicrystals, corresponding to inflation scales,
scale like their embedding periodic lattice if the Fourier
transforms of the functions which select the weight with
which a lattice site is projected are not themselves sharp-
ly peaked there.

Finally, we obtain the transform of the KP potential by
convolving with the 4 and B pulses. If V£V, in-
terference between the A4 and B lattices can destroy the
scaling of the peaks. Figure 10 shows the exact gaps of
the G lattice and compares them to the perturbative re-
sult. Main peaks match quite well and the cluster struc-
ture is qualitatively the same. For energies below ap-
proximately 100 meV the band structure of the G lattice
scales itself approximately like E /72.

All this leads to the following physical picture: Elec-
trons see finer structure with increasing energy until the
electron wavelength becomes smaller than an individual
barrier. In the nth PA this occurs approximately when
the band index exceeds F,, the number of KP wells per
unit cell. Bands within a cluster correspond to structure
at roughly the same length scale, and a change in length
scale, corresponding to an inflation transformation, ap-
pears as a main gap. To be explicit, the ground-state
band ignores structure as well as it can, bands 1 and 2 see
effectively one pulse each, and bands 3 and 4 form a mini
cluster corresponding to inflation step AB. The next
cluster sits at an energy where 4B A is resolved, and so
on. After each inflation step, the unit cell resolved by an
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------- exact gaps
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N exact mam peaks

I
1
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Band Index

FIG. 10. Exact gaps and those obtained perturbatively vs
band index for the 13th PA to the G lattice. For clarity, the
main peaks of the exact result have been plotted as a triangle.
The ratio between successive Fibonacci peaks is approximately

.

electron has F; equivalent pulses. The interaction
amongst these gives F; splittings forming the cluster at
this energy (Fig. 11). Increasing the length of the unit
cell by going to the next PA increases the number of
equivalent pulses resolved at a cluster energy, and hence
the number of bands per cluster, to the next Fibonacci
number. This simple picture breaks down when interfer-
ence between the 4 and B sublattices extinguishes a peak
of the Fourier transform of Q,({) so that clusters may
merge.

In the sense that the intracluster structure is a manifes-
tation of the matrix dynamics [cf. Eq. (16)], it is not
surprising than it resembles the structure of the tight-
binding spectrum. In fact, Kohmoto showed!® explicitly
how to map a Schrodinger equation for any potential ex-
actly onto a discrete tight-binding equation with energy-
dependent coefficients.

- PO
B o0 f T o° v
Py 20 | ; °o°°° 7 -
% °o°° //,
a 15 i 0 Mqoo° 1 1 - i
~ "0 10 20
2 10 - - 1
= -
5t /’/
o — - 1 1 1
0 200 400 600 800 1000
Band Index

FIG. 11. The energy at the bottom edge of the bands vs band
index for the n =17th PA to the G lattice. For large n, this
figure is equivalent to a plot of energy vs integrated density of
states. The inset shows the first few clusters of a Fibonacci
number of bands.
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The ground-state wave function is very similar to that
of the exact two-cycle cluster edge of a constant-
coefficient off-diagonal tight-binding model.> With in-
creasing energy, the wave function of the center of the
KP clusters changes from being dominated by the 2-cycle
of the trace map to the fractal wave function of the 6-
cycle. Furthermore, the nth band has n zeros at the bot-
tom edge and n + 1 zeros at the top edge, in accord with
Schmidt’s theorem!” (Fig. 12). We noticed that zeros can
be pinned by symmetry centers of the potential.

The obvious physical system to which the above results
are applicable would be a superlattice where the unit cell
of the nth PA is repeated a number of times so that Bloch
boundary conditions are reasonably well satisfied. On the
other hand, if the superlattice is an nth generation 1D
quasicrystal (i.e., only one unit cell of the nth PA), and n
is large enough so that the spectrum of the corresponding
PA has converged beyond our experimental energy reso-
lution, we are insensitive to boundary conditions and a
cluster of states resolved as a single band will look exactly
like a KP band of some appropriate lower PA. So in ei-
ther case we essentially study a system equivalent to a

10

T T T T T

1
0.5 1

X/L13

FIG. 12. Wave functions for the 13th PA to the G lattice.
Energies are measured with respect to the free-electron ground
state. The ground-state energy is 40.455752298 meV. They
have been normalized so that f Y*pdx =1. Lower level:
E =40.469 444474 meV. This is the bottom edge of band 3 at
crystal momentum K =w/L ;. The wave function is basically a
modulated 2-cycle showing three zeros in accord with Schmidt’s
theorem. Upper level: E=41.492589022 meV. This is the
center of the 27th band which is the center of the 21-band clus-
ter. The fractal nature of the exact 6-cycle wave function is be-
ginning to dominate (cf. Fig. 4).
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FIG. 13. Fermi surfaces of the 13th PA to the G lattice for
Ep=14 meV, n,=1.27x10" cm~> (open) and for Ep=8.7
meV, n,=6.31x10' cm~3 (closed).

PA. A Fermi surface is then clearly defined and given by
kf=k?+k}. In Fig. 13 we show Fermi surfaces for the
G lattice, in the 13th PA. The Fermi surface is open if
the Fermi energy lies in a gap and closed if it cuts a band
(cluster). For the parameters considered here, the gaps in
the Fermi surface are seen to be very small and we expect
it will be rather difficult to measure them in a standard
Shubnikov-de Haas experiment. On the other hand, the
parameter space of all possible Fibonacci lattices is very
large and it might be possible to find parameters which
would lead to experimentally accessible gaps.

Note added in proof. We have recently succeeded in
finding the invariants of these maps and have identified
their important cycles (unpublished).
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APPENDIX: DERIVATION OF THE PRECIOUS
MEAN TRACE MAPS

Let M, be a 2X2 matrix of unit determinant so that

TrMP=TrtM "=\l +Ag", (A1)
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where M, "=(M,"")" and A, is an eigenvalue of M,.
Choosing a basis in which Mq is diagonal, we see that
Tr[M (M7 +M; ") ]=(Ag+A") TtM,"=TrM; TrM," .
(A2)
Let
X; =(TrM,)" -

i€{0,1,...,N} (A3)

Y, =TtM) ~%-8,,;

where N =1[n —(n mod2)]. It follows from the binomial
theorem that

N
X;=3 C;Y;, (A4)
j=0
where
n—2 £
Cij ] i mwj>t,
0 ifj<i (A5)

Note that the upper-triangular, (N +1)X (N +1) matrix
C;; has diagonal entries unity and is thus invertible:

N .
TrM] = zoc(;‘(Tqu )T
j:

(A6)

Now let M, satisfy the precious mean recursion rela-
tion

M =M, _M; . (A7)
Equation (A1) implies

MR IM, =M} M;", (A8)

MMy =MiM (A9)

The trace of the sum of the terms on the right-hand side
(rhs) is of the form (A2); however, the sum of the lhs
terms cannot be paired in this manner. We generate
equations to pair of the lhs by multiplying (A8) and (A9)
from the left by MZ! 7™ and MZ' =", respectively:

MM, =M?TM", (A10)

MY~"M, =M} "M, . (A11)

Adding (A8)-(A11) we can pair all the lhs terms but not
the rhs terms of (A10) and (A11). To pair these we add
two more equations obtained by multiplying (A10) and
(A11) from the left by M”72 and M?" %), respectively.
We continue this process of adding pairs of equations un-
til their rhs (for n even) or their lhs (for n odd) is the
power of a single matrix. Taking the trace of the sum of
these equations we obtain
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R
=Tr[M} (M +MM]+ 3

r

even

S ATr(M, (M7 T{+METDT+ T M, (M7 '+ M{7")]=8, (TtM _ +TtM, ,,)}

{Trl Mg (ME ™"+ M~ ]+ Tr[ M (M ST+ ML)
2

=8, (TrtM{ +TrM ™M}, (A12)

where L =n —[(n +1)mod2] and R =n —(n mod2). The paired terms then simplify by (A2) so that (A12) reads

L

S [TeMy _\ TrMP o +TeM, , TeMP = =8, (TtMy _+TrM, . ,)]

loaqa =1

R
=TrM; , TtMi+ 3 [TeMg TeMy ~ "+ TeM TeMp 7 =8, (TeM} | + TrM[)] .

r 2

even

(A13)

The recursion relation for the traces is now obtained by writing traces of powers of matrices as powers of traces of ma-

trices using (A6).

Equation (A13) shows that the recursion relation for the traces forms a 3D map for all n:
=1TrM,;, and z=]TrM, .

—(,2,2'(x,y,z;n)), where x=1TrM, _,,

z'(x,p,2;1)=2zy —x ,
1

(x,,2)

Explicitly for n=1, 2, and 3,

(A14)

z’(x,y,z;2)=;(4y222——y2—zz—xz) R
z’(x,y,z;3)=T;—l-(32y3z3— 16yz® —16y°z —4xz%*+6yz +x) ,
y —

Note that only the golden-mean trace map is volume conserving.
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